Abstract

Multiple sclerosis (MS) is a neurodegenerative disease characterized by neuroinflammation and demyelination that results in axon loss. Multiple sclerosis has been shown to be the result of an autoimmune response caused by a mixture of genetic and environmental factors. Dendritic cells are prominent antigen-presenting cells that interact with various molecules to regulate the immune system. The dysfunction of various features of immune regulation, including interleukins (ILs), CD4+ T cells, and suppressor of cytokine signaling (SOCS1), has been implicated in the pathogenesis of MS. T cells, particularly through the malfunction of B7-costimulatory pathways, have been shown to affect the progression of the disease. SOCS1 is important in regulating the function of T cells through its interactions with other nearby genes, especially CLEC16A, with abnormal decreases in SOCS1 expression leading to the exhibition of MS symptoms. The activation of IL-23 receptors on CD4+ T cells is pivotal to their differentiation into pathogenic TH17 cells. Several promising compounds that downregulate gene expression of IL-23 and IL-23R have been discovered but require further investigation for efficacy and safety. Given their role in the severity and progression of MS, therapies that decrease these dysregulations may ultimately decrease symptoms and in turn improve patients’ quality of life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.