Abstract

AbstractThis study was undertaken to assess the involvement of hydrogen peroxide (H2O2), peroxidase (POX; EC 1.11.1.7) and superoxide dismutase (SOD; EC 1.15.1.1) in Medicago truncatula in relation with susceptibility to Phoma medicaginis infection. Several M. truncatula lines were studied in terms of their response to P. medicaginis infection. Fifteen days after inoculation (dai), differences in susceptibility were found. DZA45.5 was the least susceptible line and F83005.5 was the most susceptible line. Microscopic analysis of fungal development was performed in inoculated detached leaves of the DZA45.5 and F83005.5 lines. No significant difference was observed in events from conidia germination to penetration. Differences became apparent during the colonization process as the pathogen was able to sporulate rapidly increasing its concentration on the tissue of F83005.5 in comparison with DZA45.5. To characterize the susceptibility of the two lines, histochemical detection of H2O2 was made in detached leaves. H2O2 detection showed an early accumulation of this component in cells of DZA45.5 at 1 dai. However, H2O2 was detected in few, if any, cells in the tissues of the most susceptible line, F83005.5. The activity of POX and SOD were determined spectrophotometrically in leaves of intact inoculated plants of both lines. Phoma medicaginis inoculation of DZA45.5 and F83005.5 did not affect POX activity level in leaves when compared with control uninoculated plants. SOD activity showed a significant decrease in F83005.5 and DZA45.5 leaves at 4 dai and 9 dai, respectively, in comparison with control plants. In control plants POX activity was significantly higher in the least susceptible line DZA45.5 in comparison with F83005.5. Early and higher production of H2O2 and elevated basal POX activity in cells of the least susceptible line, DZA45.5 could explain its ability to be less favourable to the colonization and reproduction of P. medicaginis in comparison with the most susceptible line, F83005.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call