Abstract

Resistance mechanisms to Verticillium wilt are well-studied in tomato, cotton, and Arabidopsis, but much less in legume plants. Because legume plants establish nitrogen-fixing symbioses in their roots, resistance to root-attacking pathogens merits particular attention. The interaction between the soil-borne pathogen Verticillium alfalfae and the model legume Medicago truncatula was investigated using a resistant (A17) and a susceptible (F83005.5) line. As shown by histological analyses, colonization by the pathogen was initiated similarly in both lines. Later on, the resistant line A17 eliminated the fungus, whereas the susceptible F83005.5 became heavily colonized. Resistance in line A17 does not involve homologs of the well-characterized tomato Ve1 and V. dahliae Ave1 genes. A transcriptomic study of early root responses during initial colonization (i.e., until 24 h post-inoculation) similarly was performed. Compared to the susceptible line, line A17 displayed already a significantly higher basal expression of defense-related genes prior to inoculation, and responded to infection with up-regulation of only a small number of genes. Although fungal colonization was still low at this stage, the susceptible line F83005.5 exhibited a disorganized response involving a large number of genes from different functional classes. The involvement of distinct phytohormone signaling pathways in resistance as suggested by gene expression patterns was supported by experiments with plant hormone pretreatment before fungal inoculation. Gene co-expression network analysis highlighted five main modules in the resistant line, whereas no structured gene expression was found in the susceptible line. One module was particularly associated to the inoculation response in A17. It contains the majority of differentially expressed genes, genes associated with PAMP perception and hormone signaling, and transcription factors. An in silico analysis showed that a high number of these genes also respond to other soil-borne pathogens in M. truncatula, suggesting a core of transcriptional response to root pathogens. Taken together, the results suggest that resistance in M. truncatula line A17 might be due to innate immunity combining preformed defense and PAMP-triggered defense mechanisms, and putative involvement of abscisic acid.

Highlights

  • Plants continuously have to cope with attacks from pathogens or pests

  • After inoculation with V. alfalfae (Va) strain V31-2, the susceptible line F83005.5 developed disease symptoms and aerial fresh biomass was reduced at the end of the experiment, whereas the resistant line A17 was not affected (Supplementary Figure S1)

  • To assess if this difference was correlated to root colonization, both lines were inoculated with Va-A1b2, a GFP-expressing strain, and root sections were observed at different times after inoculation using confocal laser scanning microscopy

Read more

Summary

Introduction

Plants continuously have to cope with attacks from pathogens or pests. in most cases these attacks are efficiently encountered by the plants’ natural defense mechanisms, plant disease is still a major constraint in agricultural productivity. The perception of conserved microbial molecular signatures (pathogen-associated molecular patterns, PAMPs) by plant receptors initiates signaling cascades and transcription reprogramming leading to the so-called PAMP-triggered immunity (PTI; Zipfel, 2014). Main responses driven by PTI are the synthesis of antimicrobial compounds and pathogenesisrelated (PR) proteins. This innate immunity can be inactivated by adapted pathogens which secrete effector molecules which interrupt the signal transduction leading to PTI. A co-evolutionary arms race between host plants and pathogens has led to a second layer of plant defense called effector-triggered immunity (ETI), which relies on direct or indirect recognition of pathogen effectors by plant intracellular resistance (R) proteins (Dangl et al, 2013). It is specific to pathogen race and overcome by the evolution of new races (Dangl et al, 2013)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.