Abstract

IntroductionExcessive constriction of placental chorionic plate arteries (CPAs) may be associated with preeclampsia (PE). Nitric oxide (NO) as well as intermediate and small Ca2+-activated K+ channels (IKCa and SKCa) plays vital roles in vasodilation of CPAs. We hypothesized that dysregulated IKCa and SKCa channels may be involved in the pathogenesis of PE mediated by the impaired NO system on CPAs. MethodsThe location of IKCa and SKCa channels, activities of NO synthases (NOS), and expression levels of these molecules were studied on CPAs from 30 normal pregnancies and 30 PE. The vasodilating function of CPAs was measured under openers or blockers of IKCa/SKCa channels in the presence or absence of NO donor or inhibitor. ResultsIKCa and SKCa channels were located both on endothelium and on smooth muscles of CPAs and the expressions of them were downregulated in PE women comparing to those in normal pregnant women. The protein expressions of endothelial NOS (eNOS) and inducible NOS (iNOS) were downregulated on CPAs in PE accompanied by decreased activity of eNOS. Notably, the vasodilatory functions mediated by IKCa/SKCa channels and by NO were aberrant on preeclamptic CPAs. In addition, IKCa and SKCa channels were responsible for nitric oxide (NO)-attributable vasorelaxation and activity modulation of NO synthases. ConclusionsThis study provides evidence that dysregulated IKCa and SKCa channels might contribute to fetal pathogenesis of PE through direct promotion of vascular constriction of CPAs and through affecting functions of NO and activities of NOS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call