Abstract

The present study determined the effects of nitric oxide (NO) synthase induction on ethanol-mediated damage to rat gastric mucosa. NO synthase activity was determined by [14C]arginine conversion to radiolabeled citrulline. Ca(2+)-independent NO synthase activity was determined by citrulline formation in the presence of EGTA (1 mM) in the incubation mixture. Intraluminal ethanol administration (2 mL; 40% w/v) to control rats resulted in an increase in mucosal damage characterized as vasocongestion and hemorrhagic necrosis and a reduction in Ca(2+)-dependent NO synthase activity. Administration of Escherichia coli lipopolysaccharide (LPS; 3 mg/kg i.v.) augmented Ca(2+)-independent NO synthase activity (determined 4 h later) and reduced damage in response to intraluminal ethanol instillation. Ethanol treatment did not significantly affect induction of NO synthase activity. Dexamethasone pretreatment (1 mg/kg i.v. 2 h before LPS administration) reduced both Ca(2+)-independent NO synthase activity and the gastroprotective effect of LPS against ethanol-mediated mucosal injury. Likewise, concurrent administration of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (10 mg/kg s.c.) inhibited the gastroprotection associated with LPS treatment, an effect abolished by pretreatment with the NO substrate L-arginine (300 mg/kg s.c.). Indomethacin (5 mg/kg i.v.) was ineffective in suppressing LPS-mediated gastroprotection. These results suggest that while Ca(2+)-dependent NO formation is inhibited by ethanol treatment, the inducible Ca(2+)-independent NO synthase plays a role in LPS-mediated gastroprotection against ethanol-mediated damage to the gastric mucosa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call