Abstract
Oxaliplatin, a platinum-based chemotherapeutic agent, induces acute cold allodynia and dysesthesia. Cold-sensitive transient receptor potential channels (TRPM8 and TRPA1) have been implicated as candidates to mediate oxaliplatin-induced cold allodynia and hyperalgesia, but precise roles of these channels remain unclear. In this study, we investigated the role of TRPM8 in oxaliplatin-induced cold allodynia. Oxaliplatin was injected intraperitoneally in mice. Cold allodynia was evaluated by the acetone test. Expression levels of TRPM8 mRNA and protein were measured using reverse transcription-polymerase chain reaction and Western blotting, respectively. Oxaliplatin-induced cold allodynia was alleviated by the TRPM8 blockers N-(2-aminoethyl)-N-[4-(benzyloxy)-3-methoxybenzyl]-N'-(1S)-1-(phenyl) ethyl] urea and TC-I 2014. Oxaliplatin increased the expression levels of TRPM8 mRNA and protein in the dorsal root ganglia and plantar skin, respectively. Prophylactic administration of the c-Myc inhibitor 10058-F4 prevented cold allodynia and the increase of TRPM8 mRNA after oxaliplatin injection. These results suggest that oxaliplatin induces cold allodynia through the increase of c-Myc-mediated TRPM8 expression in primary sensory neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.