Abstract

Previous studies have shown that micromolar concentrations of calmodulin inhibitor calmidazolium induce fast activation of nonselective Ca2+ channels in plasma membranes of Ehrlich ascites carcinoma cells (Zinchenko, V.P., Kasymov, V.A., Li, V.V., and Kaimachnikov, N.P., Biofizika (Rus.), 2005, vol. 50 (6), pp. 1055–1069). In order to detect this type of Ca2+ channels in other cells and to establish common regulatory mechanisms, we studied calmidazolium effects on rat thymocytes. It was found that calmidazolium induces biphasic increases in Ca2+ content in cytosol of rat thymocytes due to Ca2+ entry from external medium and reflects the activity of nonselective Ca2+ channels permeable for Mn2+ and Ni2+ ions. The rate and the amplitude of the fast phase are decreased, while those of the slow phase are increased in the presence of specific inhibitors of Ca2+-independent phospholipase A2 (bromoenol lactone and palmitoyl trifluoromethyl ketone). The rate and the amplitude of the fast phase are also inhibited by arachidonic acid and the lipoxygenase inhibitor nordihydroguaiaretic acid, while the Ca2+-dependent phospholipase A2 inhibitor bromophenacyl bromide, the cyclooxygenase inhibitor indomethacin, the specific store-operated Ca2+ channel inhibitor gadolinium and the phospholipase C inhibitor U73122 have no such effect. The rate of the fast phase only slightly depends on temperature, while that of the slow phase shows a strong temperature dependence and increases with a rise in temperatures (Q10 = 2). The amplitude of the fast phase of the Ca2+ signal increases with a decrease of temperatures due to prolongation of the maximum activity of the Ca2+ channel. The data obtained suggest that iPLA2 is an intermediate link in the activation of calmidazolium-induced nonselective Ca2+ channels. The iPLA2 products lysophospholipids and arachidonic acid activate and inhibit Ca2+ channels, respectively. The fact that these compounds manifest different affinities for Ca2+ channels shed additional light on the mechanisms of biphasic Ca2+ elevation in thymus cell cytosol and prolongation of the active state of Ca2+ channels at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call