Abstract

Cerebral infarction (CI) causes severe brain damage with high incidence. This study aimed to investigate the involvement of brain-gut axis in the treatment of CI by combined administration of β-asaron and paeonol. Rat middle cerebral artery occlusion (MCAO) model was established, the interleukin-1beta (IL-1β) and tumor necrosis factor α (TNF-α) in the rat peripheral blood were determined by ELISA assay, and brain tissue damage was evaluated by TUNNEL assay. The correlation of cholecystokinin (CCK) and nuclear factor-kappaB (NF-κB) signaling components between intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol were analyzed by quantitative RT-PCR and western blotting. In vitro transwell co-culture was performed to confirm the correlated expression. The expression of CCK and NF-κB signaling components were closely correlated between the intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol. The combined administration also regulates the IL-1β and TNF-α in the MCAO rat peripheral blood and ameliorate the brain damage in MCAO rats. Elevated expression of related genes was observed in the cortical neurons co-cultured with intestinal mucosal epithelial cells treated by β-asaron and paeonol. The brain-gut axis mediates the therapeutic effect of β-asaron and paeonol for cerebral infarction through CCK and NF-κB signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call