Abstract
The blood-brain barrier (BBB) is a fundamental structure that protects the composition of the brain by determining which ions, metabolites, and nutrients are allowed to enter the brain from the blood or to leave it towards the circulation. The BBB is structurally composed of a layer of brain capillary endothelial cells (BCECs) bound to each other through tight junctions (TJs). However, its development as well as maintenance and properties are controlled by the other brain cells that contact the BCECs: pericytes, glial cells, and even neurons themselves. Astrocytes seem, in particular, to have a very important role in determining and controlling most properties of the BBB. Here, we will focus on these latter cells, since the comprehension of their roles in brain physiology has been continuously expanding, even including the ability to participate in neurotransmission and in complex functions such as learning and memory. Accordingly, pathological conditions that alter astrocytic functions can alter the BBB's integrity, thus compromising many brain activities. In this review, we will also refer to different kinds of in vitro BBB models used to study the BBB's properties, evidencing its modifications under pathological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.