Abstract
Robots are used by humans not only as tools but also to interactively assist and cooperate with humans, thereby forming physical human-robot interactions. In these interactions, there is a risk that a feedback loop causes unstable force interaction, in which force escalation exposes a human to danger. Previous studies have analyzed the stability of voluntary interaction but have neglected involuntary behavior in the interaction. In contrast to the previous studies, this study considered the involuntary behavior: a human's force reproduction bias for discrete-event human-robot force interaction. We derived an asymptotic stability condition based on a mathematical bias model and found that the bias asymptotically stabilizes a human's implicit equilibrium point far from the implicit equilibrium point and destabilizes the point near the point. The bias model, convergence of the interaction toward the implicit equilibrium point, and divergence around the point were consistently verified via behavioral experiments under three kinds of interactions using three different body parts: a hand finger, wrist, and foot. Our results imply that humans implicitly secure a stable and close relationship between themselves and robots with their involuntary behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.