Abstract

Across species, specialized retinal circuits allow animals to extract visual information from their environments. How retinal circuits extract relevant visual information is a major area of inquiry. In the mouse retina, cone photoreceptors possess a gradient of opsin expression leading to uneven detection of colors across visual space. However, at the output of the retina, ganglion cells' color preferences deviate from this gradient, suggesting that circuits in the retina may alter the color information before sending it to the brain. We explored how circuits in the retina shape chromatic information, focusing on the retina's interneurons, amacrine cells and bipolar cells. We found that inhibitory amacrine cells rebalance color preferences, leading to diverse color selectivity throughout retinal space. Since amacrine cells vary widely across species, these cells are poised to tune the chromatic information sent to the brain to each species' environmental niche.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.