Abstract

The concentration of cytoplasmic Ca(2+) regulates the contractile state of smooth muscle cells and tissues. Elevations in global cytoplasmic Ca(2+) resulting in contraction are accomplished by Ca(2+) entry and release from intracellular stores. Pathways for Ca(2+) entry include dihydropyridine-sensitive and -insensitive Ca(2+) channels and receptor and store-operated nonselective channels permeable to Ca(2+). Intracellular release from the sarcoplasmic reticulum (SR) is accomplished by ryanodine and inositol trisphosphate receptors. The impact of Ca(2+) entry and release on cytoplasmic concentration is modulated by Ca(2+) reuptake into the SR, uptake into mitochondria, and extrusion into the extracellular solution. Highly localized Ca(2+) transients (i.e., sparks and puffs) regulate ionic conductances in the plasma membrane, which can provide feedback to cell excitability and affect Ca(2+) entry. This short review describes the major transport mechanisms and compartments that are utilized for Ca(2+) handling in smooth muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.