Abstract

Room-temperature ionic liquids (RTILs), are a class of nonmolecular ionic solvents with low melting points. Most common RTILs are composed of unsymmetrically substituted nitrogen-containing cations (e.g., imidazolium, pyrrolidinium, pyridinium) or phosphonium cations with inorganic anions (e.g., Clˉ, PF6ˉ, BF4ˉ). Most of these more common ILs are of limited use analytically. Consequently many ILs containing a variety of cations and anions of different sizes have been synthesized to provide specific characteristics. In this presentation an overview of the structure and properties of ILs and a description of their expanding use in various applications in separations, chromatography and mass spectrometry will be given. A number of studies have appeared indicating that ILs have exceptional promise as stationary phases. They have a dual nature selectivity in that they separate nonpolar molecules as would a nonpolar stationary phase and they separate polar molecules as would a polar stationary phase. Many ILs have exceptional thermal stability. They are being used increasingly in a variety of applications including 2-D GC, enantiomeric separations, the measurement of water in samples/solvents/materials and compact field GC units. ILs have proven to be the best liquid MALDI-MS matrix since we introduced them as such a few years ago. The properties of ILs that make them effective will be discussed. Further, the dications developed for high stability ILs have found another novel use in electrospray ionization (ESI) MS as a reagent for ultra sensitive anion analysis. These will be discussed as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call