Abstract

Colloidal semiconductor quantum dots (QDs) are excellent materials for studying the photophysics of exciton complexes such as biexcitons, triexcitons, and charged excitons (trions). Dynamics of exciton complexes usually determines the performance of optoelectronic devices [1]. For example, trions reduce the optical gain threshold in QD lasers and multiexcitons increase photon-to-current conversion efficiencies via carrier multiplication processes in QD solar cells. In addition, unconventional properties of multiexcitons emerge in coherent processes in QD systems. We recently discovered the high-frequency coherent oscillations with integer multiples of the exciton resonance frequency, which is called multiexciton harmonic quantum coherence [2,3]. The multiexciton coherent properties have been investigated using optical methods. However, to clarify their roles in optoelectronic devices, it is necessary to conduct the electrical detection of multiexciton coherence.Here, we performed photocurrent detection of exciton quantum interference signals in QD thin films. The samples used in this study were closely packed PbS QD thin films. The QD films were sandwiched between the electron and hole transport layers to extract photogenerated carriers. Multiexcitons were generated by phase-locked femtosecond laser pulses, and then their photocurrent quantum interference signals were measured by using a quantum interference technique [4]. The photocurrent interference signal in the weak excitation shows a single sinusoidal oscillation originating from single excitons, while the interference signal changes to the profile involving multiple sinusoidal oscillations with increasing excitation intensity. This means that the multiexciton quantum coherence exhibiting harmonic oscillations is successfully detected in a photocurrent technique [5]. Furthermore, the amplitudes of harmonic quantum coherent signals in coupled QDs are significantly larger than those in isolated QDs. We clarified that the enhancement of the amplitudes is caused by cooperative processes in coupled QDs, where excitons in adjacent QDs interact with each other through their inter-QD coherent coupling. This cooperative effect can provide a new way to use inter-QD coherent coupling in advanced optoelectronic applications, e.g., amplifiers of coherent signals.Part of this work was supported by JSPS KAKENHI (JP19H05465 and JP22H01990) and JST CREST (JPMJCR21B4).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call