Abstract

Both visible defects and crystal defects in Silicon Carbide (SiC) epitaxial layers are being scanned and identified by in-line production systems. All the modern detection systems use Ultra-Violet (UV) light exposure on the wafers followed by signal capture from topographic and photoluminescence (PL) channels. The repeatability and consistency of these measurements becomes very critical for both determining the quality and yield of the wafers and screening potential affected die for reliability issues. In this work, we present the effects of repeated and long-term UV exposure on the SiC wafers. We document the loss of measurement repeatability and determine the cause for this as a highly accelerated growth of a thin oxide layer. We further offer techniques to recover from this mechanism and offer a way to prevent this from happening. The results are further verified by recreating this mechanism and observing similar effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.