Abstract

We present a new design of silicon-based micro thermoelectric generator, which utilizes silicon nanowire as the thermoelectric leg. It is driven by a steep temperature gradient exuding around a heat flow perpendicular to the substrate, and the silicon nanowires are not suspended on a cavity etched on the substrate. The power density is scalable by shortening the silicon nanowire to sub-μm length, which was experimentally demonstrated and tens of µW/cm2-class power generation was achieved at an externally applied temperature difference of only 5 K. A numerical discussion shows that the thermoelectric power can be drastically enhanced by suppressing the thermal resistance at the entire substrate. Thus, there is a plenty of room at the micro or submicrometric scales for realizing thermal energy harvesting devices with high power densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.