Abstract

The high non-uniformity and low endurance of the resistive switching random access memory (RRAM) are the two major remaining hurdles at the device level for mass production. Incremental step pulse programming (ISPP) can be a viable solution to the former problem, but the latter problem requires a material-level innovation. In valence change RRAM, electrodes have usually been regarded as inert (e.g., Pt or TiN) or oxygen vacancy (VO) sources (e.g., Ta), but different electrode materials can serve as a sink of VO. In this work, an RRAM using a 1.5nm-thick Ta2O5 switching layer is presented, where one of the electrodes was VO-supplying Ta and the other was either inert TiN or VO-sinking RuO2. While the TiN could not remove the excessive VO in the memory cell, the RuO2 absorbed the unnecessary VO. By carefully tuning (balancing) the capabilities of VO-supplying Ta and VO-sinking RuO2 electrodes, an almost invariant ISPP voltage and a greatly enhanced endurance performance can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.