Abstract

An efficient coupled approach between inviscid Euler and integral boundary layer solutions has been developed for quasi-3-D unsteady flows induced by vibrating blades. For unsteady laminar and turbulent boundary layers, steady correlations are adopted in a quasi-steady way to close the integral boundary layer model. This quasi-steady adoption of the correlations is assessed by numerical test results using a direct solution of the unsteady momentum integral equation. To conduct the coupling between the inviscid and viscous solutions for strongly interactive flows, the unsteady Euler and integral boundary layer equations are simultaneously time-marched using a multistep Runge–Kutta scheme, and the boundary layer displacement effect is accounted for by a first order transpiration model. This time-resolved coupling method converges at conditions with considerable boundary layer separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.