Abstract
A previously developed self-consistent field method is used to study an arbitrary finite set of identical spherical particles of arbitrary density moving in a uniform inviscid incompressible flow specified at infinity in the presence of a flat wall. For a given initial particle distribution in space, expressions for the particle and fluid velocities are derived taking into account the collective hydrodynamic interaction of the particles with each other and the wall. For a statistically uniform particle distribution in a semibounded inviscid fluid, analytical averaged particle and fluid velocity profiles are obtained in the first approximation with respect to the particle volume fraction in the suspension.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have