Abstract

This paper presents an application of the Dantzig-Wolfe decomposition principle to the problem of investment planning in the electric power sector. The formulation of the capacity planning problem incorporates uncertainties in long-term load growth and in fuel supply availability. In addition, the formulation permits the inclusion of such demand-side investment decisions as conservation as well as conventional and renewable supply investments, and it allows flexibility in modeling system reliability. Reliability targets can be incorporated as constraints or reliability can be optimized by minimizing customer outage costs in addition to investment costs and operating costs. Results of an application to the Pacific Northwest, involving problem sizes up to 30,000 rows and 54,000 columns, are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.