Abstract

The dynamic behavior of a cage can have a significant influence on the performance and the noise of a rolling bearing. In case of an unstable or high-frequency cage movement, vibrations are transmitted to the adjacent machine elements and the environment, which can influence the operating behavior of the whole system. In addition, a loud noise can often be perceived, which is referred to in the literature as cage rattling or squealing. In this paper, characteristics of different cage movements are investigated using multibody simulations and experimental investigations. For this purpose, essential properties of the fundamentally observable cage movement types “stable”, “unstable” and “circling” are presented. The calculated cage dynamics and the type of cage motion are used to show dependencies between the operating conditions and the resulting cage movement such as inner ring rotational speed, bearing load or cage characteristics such as pocket clearance. Based on the simulations, interactions between the input parameters can also be determined. The results are used to identify operation-critical conditions and cage properties that lead to high cage dynamics. Finally, a comparison between the results of the multibody calculations and optical measurements is made. The optical measurements are performed using high-speed cameras. Reference markers fixed on the cage and digital image correlation allow the evaluation of the kinematics as well as the deformation of the cage. These results are compared with the simulation data to ensure a high quality of dynamics simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.