Abstract

Azido procainamide methoiodide (APM), a photolabile derivative of the transport model compound procainamide ethobromide (PAEB), shows a close resemblance to PAEB from a physicochemical point of view. Like PAEB it is effectively taken up by the liver and excreted into bile. Kinetics of the uptake of APM in isolated hepatocytes revealed that in addition to a non-saturable process, two saturable uptake systems are involved ( K m1 = 3 μM, V mxl) = 80 pmol/min/10 6 cells K m2 =100 μM, V max2= 130 pmol/min × 10 6 cells). The uptake rate of APM was inhibited markedly in the presence of other organic cations. Organic anions and uncharged compounds generally had no inhibitory effect on the APM uptake. These results support the theory that there is a separate hepatic uptake system for organic cations like APM. Photoaffinity labeling of intact hepatocytes as well as plasma membrane sub-fractions enriched with sinusoidal domains disclosed two major binding polypeptides with apparent M r of 48,000 and 72,000. Such labeling patterns were not observed in membranes from hepatoma cells that are deficient in organic solute uptake. Differential photoaffinity labeling with other cationic compounds such as tributylmethyl ammonium and d-tubocurarine reduced the incorporation of APM in these polypeptides. The 48- and 72-kDa proteins might be involved in carrier-mediated transport of type I organic cations at the hepatic uptake level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.