Abstract

Increasing the injection pressure has a significant impact on atomization and combustion characteristics. Spray tip penetration serves as a vital parameter for fuel injection control and engine structure design. However, a reliable spray tip penetration model for ultra-high-pressure injection is currently lacking. To address this gap, this study establishes a theoretical 0-dimensional model for spray tip penetration under ultra-high pressure (300 MPa) conditions. The model is based on the conservation of momentum and phenomenological models. The new model divides spray tip penetration into two stages: Pre-breakup and post-breakup, with fuel injection rate and spray cone angle used as model inputs. To validate the model, high-speed camera observations and constant-volume chamber experiments are conducted to investigate the spray characteristics. The results indicate that the new spray tip penetration model demonstrates improved predictive accuracy across all experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call