Abstract

This article presents the investigations on RF-behavioral aspects for the possible operation of a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$V$ </tex-math></inline-formula> -band, continuous wave (CW) second harmonic gyrotron for plasma diagnostic application. Keeping in view the design goals and constraints, initial design studies for the mode selection and the computation of starting currents are carried out. From these studies, two possible modes, namely, TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7,3</sub> and TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8,3</sub> are considered for the second harmonic operation. Later, the cold cavity design and self-consistent calculations are carried out for the selected operating modes. All the computations are performed using the latest version of our in-house code Gyrotron Design Studio Second Harmonic Version 2020 (GDS2H-2020) with Glidcop as the cavity material. The RF behavior studies confirm the feasible operation of such a second harmonic gyrotron with power levels in excess of 115.52/217.64 kW with the chosen modes of operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call