Abstract

This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.