Abstract
In the past 30 years, research on rainfall-induced landslides has grown remarkably. The contribution of matric suction to soil strength and the physics of water flow in unsaturated soils are widely accepted phenomena among researchers. However, the adoption of unsaturated soil mechanics in geotechnical engineering practice has been relatively slow, in part due to the practicality of design solutions available to the engineer. This paper conducts a parametric study on unsaturated silty slopes under a vertical steady flow rate to identify the suitable slope and hydrologic conditions to incorporate unsaturated conditions for preliminary stability analysis. Notably, the contribution of suction is most significant for silt/clay slopes with a water table located below the mid-height of the slope. For slopes with slope height ≥20 m and a fairly high water table, the slope height is a primary controlling factor of slope stability. Two case studies based on distinct failure mechanisms are presented to review the application of common geotechnical software in rainfall seepage and stability analyses of unsaturated slopes. Focus is placed on the pre-failure and failure stages of each case study. The slip surface search method, failure mode, and coupling approach integrated into each computer program caused notable differences in output results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.