Abstract

The goal of this work was to investigate the feasibility of formulating novel dental restorative materials that utilize a step-growth thiol-ene photopolymerization. Particularly, we are aiming to significantly reduce the polymerization shrinkage and shrinkage stress while retaining adequate physical properties as compared to current dimethacrylatre-based systems. The thiol-ene system is composed of a 4:3 molar mixture of triallyl-1,3,5-triazine-2,4,6-trione (TATATO) and pentaerythritol tetramercaptopropionate (PETMP). The simultaneous measurement of shrinkage stress and functional group conversion was performed. Solvent extraction of unreacted monomers and dynamic mechanical analysis on the polymer networks that were formed were also studied. Flexural strength was measured for both filled and unfilled PETMP/TATATO and Bis-GMA/TEGDMA systems. Photopolymerization of PETMP/TATATO occurs at a much higher rate, with the maximum polymerization rate six times faster, than Bis-GMA/TEGDMA cured under the identical conditions. The results from the simultaneous measurement of shrinkage stress and conversion showed that the onset of shrinkage stress coincides with the delayed gel point conversion, which is predicted to be 41% for the 3:4 stoichiometric PETMP/TATATO resin composition. The maximum shrinkage stress developed for PETMP/TATATO was about 0.4 MPa, which was only approximately 14% of the maximum shrinkage stress of the Bis-GMA/TEGDMA system. Adequate flexural strength and flexural modulus values were obtained for both filled and unfilled PETMP/TATATO systems. The dramatically reduced shrinkage stress, increased polymerization rate, significance increased functional group conversion, and decreased leachable species are all benefits for the use-of thiol-ene systems as potential dental restorative materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.