Abstract

Herein, the feasibility of the gas tungsten arc welding‐based wire + arc additive manufacturing process for fabricating thin wall structures of niobium‐1 wt% zirconium (NbZr1) alloy is investigated. Three different heat input conditions (low, medium, and high) have been selected for fabricating it. The microstructure is characterized by using optical microscopy, scanning electron microscopy, X‐ray diffraction, energy‐dispersive spectroscopy, and electron backscattered diffraction (EBSD). The microstructure shows the columnar dendritic structure elongated in the build direction. No cracks or porosity are observed in the structure. Average Vickers hardness for low, medium, and high heat input conditions are 146.6, 162.1, and 163.5 HV, respectively. There is an increasing trend of microhardness value along the deposition height, which can be attributed to the difference in secondary dendritic arm spacing and the formation of precipitates. The tensile strength of the specimen is comparable to the conventional and additively manufactured structures. EBSD analysis confirms that possible subgrains are responsible for good mechanical properties at room temperature. In the majority of the tensile samples, the failure mechanism has been identified as a ductile fracture. The mechanical characteristics fluctuate with locations in each of the thin walls, suggesting anisotropy in the deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call