Abstract

Central to the problem of heat exchangers design is the prediction of pressure drop and heat transfer in the noncircular exchanger duct passages such as parallel channels. Numerical solutions for laminar fully developed flow are presented for the pressure drop (friction factor times Reynolds number) and heat transfer (Nusselt numbers) with thermal boundary conditions [constant heat flux (CHF) and constant wall temperature (CWT) ] for a pseudoplastic and dilatant non-Newtonian fluid flowing between infinite parallel channels. A shear rate parameter could be used for the prediction of the shear rate range for a specified set of operating conditions that has Newtonian behavior at low shear rates, power law behavior at high shear rates, and a transition region in between. Numerical results of the Nusselt number [constant heat flux (CHF) and constant wall temperature (CWT) ] and the product of the friction factor and Reynolds number for the Newtonian region were compared with the literature values showing agreement within 0.36% in the Newtonian region. For pseudoplastic and dilatant non-Newtonian fluids, the modified power law model is recommended to use because the fluid properties have big discrepancies between the power law model and the actual values in low and medium range of shear rates. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3601–3608, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call