Abstract

A 6.2 nm-thickness platinum disulfide (PtS2) film was prepared by electron beam evaporation with post vulcanization. The nonlinear transmittance was measured by power scanning method and the modulation depth is fitted to be 13%. Based on the transmittance curve, saturable absorption parameters of PtS2 are calculated with inhomogeneously broadening mechanism, including 6.4298 × 10−19 cm−2 ground-state absorption cross-section, 2.5927 × 10−19 cm−2 excited-state absorption cross-section, and 1.043 ms excited-state lifetime. The PtS2 film combined with active time management was implemented to modulate the fundamental light of optical parametric oscillator (OPO). Owing to the nonlinear absorption property of PtS2, the operation of Q-switched OPO was optimized in both the experiment and dynamical theory. In particular, the conversion efficiency was experimentally improved by 13.2%. The pump-to-signal conversion efficiency went up to 3.29%, which is the highest conversion value reported so far. The theoretical values fit the experiment well, which are from the Gaussian rate equations with PtS2’s saturable-absorption characteristic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call