Abstract

Although gas-assisted injection moulding (GAIM) provides many advantages compared with conventional injection moulding (CIM), its applications are limited to surface visual quality studies. In the present study, polypropylene plate parts designed with gas channels having five different types of cross-section but with same cross-sectional area were gas-assisted injection moulded. In addition, various plate thickness parts designed with semicircular gas channels of different radius were also moulded. The surface visual quality of GAIM parts was investigated via gloss and chromatics measurements. The effects of processing parameters and geometrical factors, introduced by part thickness, shape and associated dimensions of gas channels on glossy difference and chromatic aberration of GAIM parts were investigated. The effect on the surface visual quality of gas channel with fillet design and cavity surface with texturing treatment was also examined. It was found that glossy difference is very sensitive to the degree of crystallinity whereas gas channel residual skin melt thickness plays a dominant factor for chromatic aberration. The processing conditions significantly affect surface visual quality. Gas channel design of semicircular cross-section (shape A) provides a better surface visual quality than the other designs. In addition, in order to obtain best surface visual quality, the ratio of equivalent radius to plate thickness should be approximately equal to 2.3. Alternatively, surface visual quality can be improved by texturing treatment on the cavity surface of the core-side. The present study provided part design guidelines for choosing the most effective gas channel design to achieve the best surface visual quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.