Abstract
The design of the gas channel plays an important role in the successful application of gas assisted injection moulding. Although empirical guidelines for gas channel design have been proposed by the various equipment suppliers, quantitative rules based on well designed experiments have not been reported previously. To investigate the effects of geometry on gas penetration for two plate thicknesses, transparent polystyrene (PS) plates designed with semicircular gas channels of differing radii and with rectangular gas channels of differing width to height ratios have been produced using gas assisted injection moulding. Moulding windows and criteria for gas penetration were also chosen so that design rules could be defined quantitatively. The mouldability index was also classified into five levels (excellent, good, fair, poor, and bad) based on the relative areas of the moulding windows. From a plot of mouldability index against R eq , the ratio of equivalent gas channel radius to plate thickness, it was found that to obtain an appropriate moulding window (i.e at least a fair mouldability index) R eq should be greater than 2. Gas channels with a semicircular cross-section provide better mouldability than those with rectangular cross-sections of the same cross-sectional area. For the same equivalent radius, the ratio of width to height in rectangular gas channels also affects the mouldability index. The present investigation provides part designers with preliminary quantitative design/moulding guidelines for choosing the effective gas channel design that allows the parts to be moulded within an appropriate moulding window, so that the uncertainty in both simulation and process control can be overcome. A methodology for the establishment of guidelines for quantitative design of gas channels is also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.