Abstract
As a cornerstone of 5G, high-resistivity silicon on insulator plays an important role in telecommunications. But it is still a great challenge to measure the resistivity of high-resistivity silicon wafer quickly and accurately. Comparing to other methods, four-point probe (4PP) techniques are considered as the preferable approach. The time-dependent behavior of high-resistivity silicon wafer were first observed during 4PP measurement and the variation of chemical elements on the wafer surface was studied by X-ray photoelectron spectrum. The resistivity of P-type silicon decreases with storage time, while that of N-type silicon increases, which can be attributed to the surface energy band bending due to the variation of the interface states during native oxidation on wafer surface. The first-principles calculation was carried out to observe the effect of interface states on the electrical properties. Based on mechanism of time-dependent behavior of high-resistivity silicon, a thermal treatment method was proposed to realize stable resistivity rapidly for high-resistivity silicon wafer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.