Abstract

This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call