Abstract
Carbon fiber-reinforced composite materials are widely employed in aircraft structures due to their high specific strength and high specific modulus. However, the poor impact resistance of carbon fiber reinforced composites creates challenges for aircraft design and maintenance. The introduction of a layer of glass fibers in the hybrid composites can effectively improve the impact performance of the composite laminate. In this work, finite element models for low-velocity impact of carbon fiber laminate and glass fiber laminate are established and validated. A VUMAT subroutine in Abaqus is implemented to evaluate the progressive damage of the composite materials, and a cohesive-zone model is employed to simulate the interface failure behavior. The impact resistance of hybrid composite laminates is systematically studied based on the results of the finite element simulation. Ten different hybrid configurations are studied and compared with a composite laminate having a single type of fiber reinforcement. The numerical results for the global mechanical response, damage modes and characteristics are extracted and systematically discussed. The results suggest that laminates having carbon fiber layers on the top and bottom surfaces with glass fiber layers between them perform the best in terms of energy absorption. When the glass fiber layers are used for the top and bottom surfaces with carbon fiber layers as the core, the presence of a carbon fiber layer with a ±45 ° orientation can help to reduce the damage area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.