Abstract

A flame-retardant wood was prepared using a series of insoluble molybdates through the double bath technique. The flame retardancy of the wood samples was studied with the limiting oxygen index (LOI) method. The relationships between the flame-retardant performance and the thermal property of wood were studied by the thermogravimetry (TG), derivative thermogravimetry (DTG), differential thermal analysis (DTA), scanning electron microscopy (SEM), and the thermogravimetry–mass spectrometry (TG–MS) analysis methods. The results showed that the insoluble molybdates, which were precipitated into the wood by the double bath technique, can obviously improve the flame retardancy of wood. Similarly, the transition metal molybdates showed higher flame-retardant efficiency than the main group metal molybdates do, which probably due to the thermal barrier effect that Fe2(MoO4)3 acts during the combustion of the samples. At the same time, Fe2(MoO4)3 catalyzed the dehydration and carbonization reactions of wood, and caused an increase in the amount of char produced, and an improvement of the stability of the char residue. Moreover, the mass spectrometry results indicated that the excess transition metal ions speed up the deep decomposition of the char residue, and resulting in the smoldering of wood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call