Abstract

The geometry heterogeneity induced by embedded gravel can cause severe stress heterogeneity and strength heterogeneity in glutenite reservoirs, and subsequently affect the initiation and propagation of hydraulic fractures. Since the discrete element method (DEM) can accurately describe the inter-particle interactions, the macromechanical behavior of glutenite specimen can be preciously represented by DEM. Therefore, the initiation and propagation mechanisms of hydraulic fractures were investigated using a coupling seepage-DEM approach, the terminal fracture morphologies of hydraulic fractures were determined, and the effects of stress differences, permeability, and gravel strength were studied. The results show that the initiation and propagation of hydraulic fractures are significantly influenced by embedded gravel. In addition, the stress heterogeneity and strength heterogeneity induced by the gravel embedded near the wellbore increase local initiation points, causing a complicated fracture network nearby. Moreover, due to the effect of local stress heterogeneity, gravel strength, and energy concentration near the fracture tip, four interactions of attraction, deflection, penetration, and termination between propagating fractures and encountering gravel were observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call