Abstract
In present work, the magneto-electronic and optical features of Sr1-xNixTiO3 (x = 12.5%, 25%, 50% and 75%) compounds are calculated using full potential linearized augmented plane wave (FP-LAPW) scheme within density functional theory (DFT) as employed in WIEN2k software. The electronic band structures (BS) and density of states (DOS) interpret the induced half metallic ferromagnetism mainly originating from highly spin polarized Ni-d states. The computed value of total magnetic moment of Sr1-xNixTiO3 is 1.99998, 1.99991, 2.00003 and 2.00005 µB at 12.5%, 25%, 50% and 75% concentration respectively, which emerge primarily due to Ni-3d electrons. Furthermore, the optical features (refraction, dielectric function, absorption, and reflectivity) have also been computed within energy range of 0-10 eV. Sr1-xNixTiO3 is optically active in visible to ultraviolet (UV) region owing to low reflectivity and high absorption. Results portray that the studied compound is a potential contender for its usage in the development of spintronic and optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.