Abstract
The use of nanoparticles is becoming increasingly apparent in a growing number of medical fields. To exploit the full potential of these particles, it is essential to examine their behavior in the blood and their possible interactions with blood cells. Dendritic core multi-shell DendroSol™ nanoparticles (DS-NPs) are able to penetrate into viable layers of human skin, but nothing is known about their interaction with blood cells. In the present study, we analyze the effect of DS-NPs on red blood cells (RBCs) using confocal laser scanning microscopy (CLSM), flow cytometry, sedimentation rate analysis, spectrophotometry, and hemolysis assays. DS-NPs labeled with Nile red (NR) were added to RBC suspensions and their accumulation in the area of the RBC membranes was demonstrated by CLSM as well as by flow cytometry. In the presence of DS-NPs, the RBCs show an increased sedimentation rate, which also confirms the binding of the NPs to the cells. Interestingly, in the presence of DS-NPs, the RBCs are stabilized against hypotonic hemolysis as well as against the hemolytic action of Triton X-100. This proven anti-hemolytic effect could be utilized to enhance the circulation time of RBCs loaded with drugs for prolonged sustained release and drug delivery with enhanced bioavailability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have