Abstract

PurposeAuxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve the indentation performance of the re-entrant diamond auxetic metamaterial by tuning the structural parameters that have not been reported.Design/methodology/approachThe design of experiment strategy was adopted to study the influence of re-entrant angle, diamond angle and thickness-to-length ratio on relative density, load, stiffness and specific energy absorption (SEA) during indentation experimentally. Grey relational analysis was chosen as a multi-objective optimisation technique to optimise structural performance. Surrogate models were proposed to uphold the metamaterial’s tailorability for desired application needs. The fit and efficacy of the proposed models were tested using specific statistical techniques. The predominant deformation mechanisms observed with the alteration in structural parameters were discussed.FindingsThe improvements noticed are 48 times hike in load, 112 times improvement in stiffness and 10 times increase in SEA for optimised structures. The surrogate models are proven to predict the outputs accurately for new input parameters. In-situ displacement fields are visualised with an image processing technique.Originality/valueTo the best of the authors’ knowledge, the indentation performance of the re-entrant diamond auxetic metamaterials has not been reported and reported for the first time. The influence of geometrical parameters on the newly developed structure under concentrated loading was evaluated. The geometry-dependent printing variations associated with 3D printing have been discussed to help the user to fabricate re-entrant diamond auxetic metamaterial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call