Abstract

In order to improve the anticorrosion ability of a Mg-5Zn-1.5Ca alloy used as a bone replacement material, this study prepared the MnCaP conversion coating, which was formed from a phosphating solution mixed with a MnCl2solution of 0.05 molarity, on a magnesium (Mg) alloy. After forming a MnCaP conversion coating on a Mg alloy, micro-arc oxidation (MAO) proceeded for improving the anticorrosion ability of the sample. As a result, when the 0.05MnCaP coating on a Mg alloy was immersed in the simulated body fluid (SBF), the corrosion current, pH value change, and hydrogen evolution volume of the SBF solution are lower than a uncoated Mg alloy. From the SEM and EDS analyses for a corroded 0.05MnCaP coating on a Mg alloy, the manganese (Mn) phosphate in a lumpy-rock form and the calcium (Ca) phosphate in a flake form alternate to each other densely, so that the coating can effectively prevent a Mg alloy from corrosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call