Abstract

Long-term stability and accurate time synchronization are at the core of timing network facilities in several critical infrastructures, such as in telecommunication networks. In these applications, timing signals disciplined by Global Navigation Satellite Systems (GNSS) receivers, i.e., One Pulse-per-Second (1-PPS), complement Primary Reference Time Clocks (PRTCs) by compensating for long-term drifts of their embedded atomic clocks. However, GNSS receivers may expose timing distribution networks to Radio Frequency (RF) vulnerabilities being the cause of possible degraded or disrupted synchronization among the nodes. This paper presents a test methodology assessing the resilience of new GNSS timing receivers to different classes of intentional RF interferences. The analysis of the results compares the effects of practicable spoofing and meaconing attacks on the 1-PPS generated by three Commercial off-the-shelf (COTS) GNSS timing receivers, currently employed in timing applications. On one hand, the results emphasised the robustness of State-of-the-Art (SoA) mitigation technologies compared to previous generations’ devices. On the other hand, the vulnerability of SoA receivers to meaconing attacks highlights the limits of such mitigation solutions that may turn to severe effects on telecommunication networks’ performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call