Abstract

AbstractMicro-Raman spectroscopy and chemical etching were applied to determine the depth of subsurface damage in silicon wafers undergoing different machining processes: cutting, grinding, polishing and lapping. In comparison with the Raman spectrum of perfect single crystal silicon, both the shape and intensity at the shoulder (500 cm−1) and the subpeak (300 cm−1) spectral regions were changed in all the machined wafers. The intensities at shoulder and subpeak gradually decreased and finally resumed to normal, as the depth of the investigated layer increased. According to the chemical etch rate, the depth of the subsurface damage was thus evaluated for the different wafers. TEM observations further confirmed the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.