Abstract

Under the influence of duct curvature, cross-sectional area variation and internal struts, the internal flow field within a curved annular duct becomes rather complicated and contains strong secondary flow. In this paper, the secondary flow characteristics in an annular duct with struts are experimentally and numerically investigated. The results show that large pressure gradients exist on the bends of hub and shroud. Meanwhile, two counter-rotating vortex pairs appear both along the hub-side and shroud-side surfaces. The hub-side vortex pair of which the vortex cores travel downstream parallelly evolves from the horseshoe vortex which is induced by the leading edge of the upstream strut, whereas the shroud-side vortex pair originates from the strut trailing edge and the corresponding vortex cores develop in a divergent way. Additionally, the effects of the duct exit Mach number on the secondary flow characteristics are also studied. As the exit Mach number increases, the streamwise pressure gradients increase and lead to more intense vortices, higher total pressure loss and larger flow distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call