Abstract

In this study, a new methodology for evaluating full-scale landfill leachate treatment processes by non-targeted analysis using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS) was proposed. The method revealed the chemical complexity of organic compounds in landfill leachate samples at the molecular level and evaluated the removal efficiency of the anaerobic-anoxic-oxic (A2O) - membrane bioreactor (MBR) - nanofiltration (NF) treatment process in conjunction with multi-level classification of organic compounds. Results showed that the results of non-targeted analysis combined with multi-level classification of organic compounds had a significant correlation with the conventional water quality parameters and can be used to evaluate the treatment process. A total of 2508 organic compounds were detected in 6 samples. 17 emerging contaminants (ECs) with known potentially hazards were detected, including Diisobutyl Phthalate (DIBP), which is toxic to male reproduction and development, and 4-Tert-Butylphenol, which causes endocrine disruption in animals. The removal rate of organic compounds by this full-scale landfill leachate treatment processes reached 79.14%. The anaerobic tank played a crucial role with 64.98% contribution. For compounds, the removal rate of heterocyclics was as high as 94.67%, and the removal rate of aliphatics was poor, only 63.49%. This treatment process had almost perfect removal effect on the steroids in alicyclics and phenols in aromatics, but poor treatment effect on saturated alkanes in aliphatics and naphthenes in alicyclics. This study provides a methodology for accurate assessment of the molecular level of treatment processes, new insights for process optimization in waste treatment plants, and data support for the detection of emerging contaminants. The environmental hazards of landfill leachate can be further evaluated in the future in conjunction with ecotoxicity assessment studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call