Abstract
Iron oxide nanoparticles (Fe3O4 NPs) have recently received increasing interest in the biotechnology and life science. However, little is known about the nanoneurotoxicity of Fe3O4 NPs following exposure to neurons. This study was to elucidate the cytotoxicity and DNA damage of Fe3O4 NPs on PC12 cells line which derived from Rattus norvegicus pheochromocytoma. The cell viability was observed by MTS assay and cell cycle status was analyzed using flow cytometry. DNA damage related gene (P53) and its downstream targets (P21 and GADD45) were determined by semiquantitative RT-PCR. The results showed that exposure to Fe3O4 NPs at dosage levels between 25 and 200 microg/ml decreased cell viability respectively. The nanoparticles treatment caused cell cycle arrest in G2/M phase and the mRNA levels of P53 increased when PC12 cells were incubated with different concentrations Fe3O4 NPs. However, P21 and GADD45, the downstream targets of P53, were not affected. In summary, exposure to Fe3O4 NPs resulted in a dose-dependent cytotoxicity in cultured PC12 cells that was associated with increased P53 gene expression and much attention should be paid to the potential impact of Fe3O4 NPs on the central nervous system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have