Abstract

AbstractNow‐a‐days, let out a huge number of bovine trimmings based solid waste from tanneries has caused significant environmental concerns. To overcome this problem, this study emphasizes on bovine trimmings derived collagen based high‐performance composite with graphene oxide (Col‐GO) by using solvent evaporation method. The Col‐GO composite film formation was governed by plasticization with glycerol, crosslinking reaction of collagen chain; and H‐bonding interaction between GO and collagen functional groups. The Col‐GO composite films were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angle measurements. FTIR and TGA results indicate that interfacial H‐bonding interaction between GO with collagen, and thermal stability of Col‐GO composites film. Contact angle results indicate that hydrophobicity of Col‐GO films was significantly enhanced compared to pure collagen film. The SEM analysis results indicate the homogeneous integration of GO in the Col‐GO composite film. The composite film exhibits improvement in tensile strength and Young's modulus (YM) by 45% and 33% respectively. The water and gas barrier properties of the composite film improved by 47.4%, 66.57%, and 87.34%, respectively compared to pure collagen film. The Col‐GO composite film showed excellent biodegradation in the soil burial test, degrading 79.47% in 42 days. The potential of the biodegraded Col‐GO composite sample as a biofertilizer has been investigated by cultivating Spinacia oleracea seeds. The Col‐GO composite film might be a very promising bio‐compostable flexible and sustainable packaging film alternative to plastic packaging made from oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call