Abstract

Lithium-ion batteries are widely used in electronics, and are susceptible to thermal runaway from mechanical abuse, which poses a threat to consumer safety and the development of new batteries. This work conducts both experimental and numerical simulation to study thermal runaway caused by varying degrees of mechanical bending of commercial mobile phone batteries. The results show that batteries with greater degrees of deformation have a higher thermal runaway maximum temperature with quick temperature rise rate. Simulated results provide in-depth analysis towards correlation between temperature and heat generation, it is found that the two significant increases in temperature rise rate are attributed to the heat generated by SEI decomposition and the heat released by the cathode and electrolyte reaction. In order to effectively reduce or even eliminate the hazards of thermal runaway, it is necessary to lengthen the interval between the two heat releases or to reduce the amount of heat released. This study further develops a theoretical framework for battery bending abuse and provides guidance to prevent thermal runaway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.