Abstract

Abstract Rotating significantly alters the internal cooling of turbine rotor blades by induced Coriolis force and buoyancy force, whose effects are characterized by the nondimensional rotation number (Ro) and buoyancy parameter (Bo). The present work was carried out in a new experimental rig of rotor blade internal cooling to obtain detailed heat transfer distributions when the three nondimensional criterion numbers (i.e., Re, Ro, and Bo) are similar to aero-engine operating conditions. Smooth and ribbed two-pass internal cooling channels with a 180-deg tip turn are investigated. The hydraulic diameter is 25.4 mm (1 in.), and the aspect ratio is 2:1. The Reynolds number is fixed at 25,000, with the maximum Ro and Bo of 0.316 and 0.272, respectively. The steady-state thermochromic liquid crystal (TLC) technique is used to measure detailed heat transfer distributions in the channel. Steady-state RANS simulations are also employed to resolve the flow characteristics. The effects of rotation on the flow and heat transfer characteristics are studied in this paper. The results show effects of rotation on the heat transfer distribution present apparent spatial discrepancy, especially around the bend region. The significant difference in the influence of rotation is witnessed in the smooth and the ribbed channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call