Abstract
The feasibility of ultrasonic vibration-assisted grinding (UVAG) in machining brittle materials, such as zirconia ceramics, has been preliminarily proved. The high temperature generated in grinding processes is a main factor responsible for thermal and surface/subsurface damage. However, there are few reports about grinding temperature for zirconia ceramics by UVAG. In this study, a grinding force model is used for the analysis of grinding temperature in UVAG based on kinematic principle of ultrasonic vibration and brittle material fracture removal mechanism. Then, the heat fluxes equation during grinding process is analyzed. And the grinding temperature model is developed based on theoretical grinding force model and heat fluxes. Finally, pilot experiments are carried out to analyze influence of vibration parameters and process parameters on UVAG temperature and verify the mathematical model. The comparison results show that ultrasonic vibration has an important influence on grinding temperature with the reduction of 10.6%. In addition, there is a good consistency between mathematical model and the experimental results. The average relative error is within 10%. Therefore, the mathematical model could be used to predict the UVAG temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have